-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
We are happy to announce polymake 2.13, which already appeared in April. The
tar ball can be downloaded from
http://wiki.polymake.org/lib/exe/fetch.php/download/polymake-2.13-1.tar.bz2
The most important new features include:
* new application "ideal" with interface to Singular, version 4
* new application "fulton" for normal toric varieties
* quadratic field extensions, e.g., to represent the Platonic solids exactly
* updated and modularized iterface to libnormaliz
* new interface to ppl (Parma Polyhedra Library)
* improved computation of convex hulls up to symmetry (via interface to
sympol)
* TikZ output
For details see
http://wiki.polymake.org/doku.php/news/release_2_13
polymake 2.13 also comes as a bundle for MacOS 10.8 and 10.9.
Happy polymaking! On behalf of the entire polymake team,
Michael Joswig
- --
Prof. Dr. Michael Joswig <joswig@math.tu-berlin.de>
Technische Universitaet Institut fuer Mathematik, MA 6-2
Str. des 17. Juni 136 D-10623 Berlin, Germany
phone +49 (30) 314-75904 fax +49 (30) 314-25047
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
Comment: Using GnuPG with Thunderbird - http://www.enigmail.net/
iQEcBAEBAgAGBQJTaORbAAoJEFvVrjjpdzmcZvgH/jVIr/dtl1exNuFAKM/j4cRM
k24bH5Lp6SfT1PNvaYarc0imH7PL6ZvDpt4hdzK9JFvmCa8M8sl023bLFgrkHTKQ
3Vu7zlThgHOMltFR+U2tQMQdKgjgEdbiW5KIjBZYV5iRq9cvvss7XTTuoz3yl/MD
uMwVz+e13IiA5GxA36wfG8fOwFJZSYxkEiyxphrd3MainpatVAqes5ovqDYuVLjE
XFB9aw4TACrKEXyYLAt0XQoUXSYQifQ7UdlNEKw36IeHcQ38LZQEybqnMEkDO3VY
LfoUONdyNkrpgGLfFUpseN2NEiXx5Z00EZKJk5dbGHzglHzbQKMr14tV9+B0RTE=
=KZom
-----END PGP SIGNATURE-----
**********************************************************
*
* Contributions to be spread via DMANET are submitted to
*
* DMANET@zpr.uni-koeln.de
*
* Replies to a message carried on DMANET should NOT be
* addressed to DMANET but to the original sender. The
* original sender, however, is invited to prepare an
* update of the replies received and to communicate it
* via DMANET.
*
* DISCRETE MATHEMATICS AND ALGORITHMS NETWORK (DMANET)
* http://www.zaik.uni-koeln.de/AFS/publications/dmanet/
*
**********************************************************